miércoles, 26 de mayo de 2010

CONCLUSIONES

El concepto de proposición, la forma en que se pueden formar proposiciones compuestas usando los conectores lógicos, representar enunciados por medio de simbología lógica, conocer los conceptos de tautología, equivalencia lógica, regla de inferencia. Realizar demostraciones de teoremas por medio del método directo y contradicción. Pero con problemas que le sean familiares e interesantes. Se trata de que en cada uno de los subtemas participe proponiendo sus propios ejemplo y que sobre todo al final de la unidad él tenga la habilidad, confianza e iniciativa para inferir posibles soluciones.
Todo enunciado puede ser planteado en términos de teoremas. Un teorema por lo general es resultado de un planteamiento de un problema, este planteamiento debe tener el siguiente formato.



(p1 Ù p2 Ù .......Ù pn) Þ q


Como se establece p1, p2 ,......,pn son hipótesis (o premisas) derivadas del mismo problema y que se consideran válidas. Pero además deberán conectarse con el operador And (Ù ), lo cual implica que p1 es cierta y (Ù ) p2 es verdad y (Ù )...... y pn también es cierta entonces (Þ ) la conclusión (q) es cierta. Para realizar la demostración formal del teorema se deberá partir de las hipótesis, y después obtener una serie de pasos que también deben ser válidos, ya que son producto de reglas de inferencia. Sin embargo no solamente las hipótesis y reglas de inferencia pueden aparecer en una demostración formal, sino también tautologías conocidas. En el teorema anterior cada uno de los pasos p1, p2,...pn son escalones que deberán alcanzarse hasta llegar a la solución.
Lo mismo ocurre con todo tipo de problemas que se nos presentan en la vida, antes de llegar a la solución debemos alcanzar ciertas metas (p1,p2,....pn) hasta llegar al objetivo o conclusión (q). Pero una vez que logramos el objetivo debemos plantearnos nuevos objetivos que nos permitirán superarnos.


Dependiendo del área de interés al estudiante puede transportad dichos conocimientos, de tal manera que le auxilien para entender y resolver otro tipo de problemas. En el caso de computación cada línea de un programa se obtiene inconcientemente aplicando una regla de inferencia y por lo tanto cada instrucción tiene su orden en que debe de ir colocada, si se cambia esa línea seguramente el resultado ya no será igual. Pero hay tantas formas de resolver un problema por medio de un programa como alumnos distintos tenga un maestro.
Una demostración formal equivale a relacionar esquemas para formar estructuras cognitivas. Sí el alumno sabe inferir soluciones lógicas, estará en condiciones de resolver todo tipo de problemas.
Uno de los objetivos principales del constructivismo, es la construcción del conocimiento. El tema de "lógica matemática", se presta para que el alumno pueda realizar los relacionamientos entre las distintas proposiciones, esto permite crear nuevas formas de resolver problemas en distintas ramas: matemáticas, física, química pero también en las ciencias sociales y por su puesto cualquier problema de la vida real. Porque cada vez que nos enfrentamos a un problema, manipulamos la información por medio de reglas de inferencia que aunque no estén escritas debemos respetar. Cada vez que realizamos una actividad empleamos la lógica para realizarla, quizá algunos realicen dicha actividad por caminos más corto, otros realizan recorridos más largos, pero al fin de cuentas lo que importa es llegar al resultado. Si se le da la confianza al alumno para que cree e innove, su estructura cognitiva seguramente va a crecer.

REGLAS DE INFERENCIA

Los argumentos basados en tautologías representan métodos de razonamiento universalmente correctos. Su validez depende solamente de la forma de las proposiciones que intervienen y no de los valores de verdad de las variables que contienen. A esos argumentos se les llama reglas de inferencia. Las reglas de inferencia permiten relacionar dos o más tautologías o hipótesis en una demostración.

Ejemplo 1
¿Es valido el siguiente argumento?.
Si usted invierte en el mercado de valores, entonces se hará rico.
Si se hace usted rico, entonces será feliz.
____________________________________________________
\ Si usted invierte en el mercado de valores, entonces será feliz.
Sea:
p: Usted invierte en el mercado de valores.
q: Se hará rico.
r: Será feliz

De tal manera que el enunciado anterior se puede representar con notación lógica de la siguiente manera:
p ® q
q ® r
______
\ p ® r

EQUIVALENCIA LOGICA.

Se dice que dos proposiciones son lógicamente equivalentes, o simplemente equivalentes. Si coinciden sus resultados para los mismo valores de verdad. Se indican como p º q.
Considero que un buen ejemplo es el que se estableció para ilustrar la tautología en donde se puede observar que las columnas de (p® q) y (q’® p’) para los mismo valores de verdad, por lo tanto se puede establecer que (p® q) º (q’® p’)

TAUTOLOGICAS Y CONTRADICCION

Tautología, es aquella proposición (compuesta) que es cierta para todos los valores de verdad de sus variables.

En las tautologías para todos los valores de verdad el resultado de la proposición es siempre v. Las tautologías son muy importantes en lógica matemática ya que se consideran leyes en las cuales nos podemos apoyar para realizar demostraciones.

A continuación me permito citar una lista de las tautologías más conocidas y reglas de inferencia de mayor uso en las demostraciones formales que obviamente el autor no consideró..



1.- Doble negación.
a). p''Ûp

2.- Leyes conmutativas.
a). (pÚq)Û(qÚp)
b). (pÙq)Û(qÙp)
c). (p«q)Û(q«p)

3.- Leyes asociativas.
a). [(pÚq)Úr]Û[pÚ(qÚr)]
b. [(pÙq)Ùr]Û[pÙ(qÙr)]

4.- Leyes distributivas.
a). [pÚ(qÙr)]Û[(pÚq)Ù(pÚr)]
b. [pÙ(qÚr)]Û[(pÙq)Ú(pÙr)]

5.- Leyes de idempotencia.
a). (pÚp)Ûp
b). (pÙp)Ûp

6.- Leyes de Morgan
a). (pÚq)'Û(p'Ùq')
b). (pÙq)'Û(p'Úq')
c). (pÚq)Û(p'Ùq')'
b). (pÙq)Û(p'Úq')'

7.- Contrapositiva.
a). (p®q)Û(q'®p')

8.- Implicación.
a). (p®q)Û(p'Úq)
b). (p®q)Û(pÙq')'
c). (pÚq)Û(p'®q)
d). (pÙq)Û(p®q')'
e). [(p®r)Ù(q®r)]Û[(pÙq)®r]
f). [(p®q)Ù(p®r)]Û[p®(qÙr)]


9.- Equivalencia
a). (p«q)Û[(p®q)Ù(q®p)]

10.- Adición.
a). pÞ(pÚq)

11.- Simplificación.
a). (pÙq)Þp

12.- Absurdo
a). (p®0)Þp'


13.- Modus ponens.
a). [pÙ(p®q)]Þq

14.- Modus tollens.
a). [(p®q)Ùq']Þp'

15.- Transitividad del «
a). [(p«q)Ù(q«r)]Þ(p«r)

16.- Transitividad del ®
a). [(p®q)Ù(q®r)]Þ(p®r)

17.- Mas implicaciones lógicas.
a). (p®q)Þ[(pÚr)®(qÚs)]
b). (p®q)Þ[(pÙr)®(qÙs)]
c). (p®q)Þ[(q®r)®(p®r)]

18.- Dilemas constructivos.
a). [(p®q)Ù(r®s)]Þ[(pÚr)®(qÚs)]
b). [(p®q)Ù(r®s)]Þ[(pÙr)®(qÙs)]



Contradicción es aquella proposición que siempre es falsa para todos los valores de verdad, una de las mas usadas y mas sencilla es pÙp’ .

Una proposición compuesta cuyos resultados en sus deferentes líneas de la tabla de verdad, dan como resultado 1s y 0s se le llama contingente.

TABLAS DE VERDAD

En estos momentos ya se está en condiciones de elaborar cualquier tabla de verdad.



El número de líneas de la tabla de verdad depende del número de variables de la expresión y se puede calcular por medio de la siguiente formula.

No de líneas = 2n Donde n = número de variables distintas.

Es importante destacar a medida que se avanza en el contenido del material el alumno deberá participar activamente. Estos significa que cuando se esta definiendo proposiciones y características propias de ellas, además de los ejemplos que el maestro explique, el alumno deberá citar proposiciones diferentes, deberá entender el porque un enunciado no es válido. Cuando se ven conectores lógicos, los alumnos deberán saber emplearlos en la representación de proposiciones más complejas. Pero algo muy importante, es que los ejemplo que el maestro y los alumnos encuentren en la clase, deben ser de interés para el estudiante. Cuando se ven tablas de verdad el alumno deberá saber perfectamente bien el porque de cada uno de los resultados. En pocas palabras el conocimiento deberá ser significativo.

PROPOSICIONES BICONDICIONALES

Sean p y q dos proposiciones entonces se puede indicar la proposición bicondicinal de la siguiente manera:

p « q Se lee “p si solo si q”

Esto significa que p es verdadera si y solo si q es también verdadera. O bien p es falsa si y solo si q también lo es.



La proposición condicional solamente es verdadera si tanto p como q son falsas o bien ambas verdaderas


A partir de este momento, ya se está en condiciones de representar cualquier enunciado con conectores lógicos.

Ejemplo.
Sea el siguiente enunciado “Si no pago la luz, entonces me cortarán la corriente eléctrica. Y Si pago la luz, entonces me quedaré sin dinero o pediré prestado. Y Si me quedo sin dinero y pido prestado, entonces no podré pagar la deuda, si solo si soy desorganizado”

Donde:
p: Pago la luz.
q: Me cortarán la corriente eléctrica.
r: Me quedaré sin dinero.
s: Pediré prestado.
t: Pagar la deuda.
w: soy desorganizado.

(p’ ® q) Ù [p ® (rÚs) ] Ù [(rÙ s) ® t’ ] « w

PROPOSICIONES CONDICIONALES

Una proposición condicional, es aquella que está formada por dos proposiciones simples (o compuesta) p y q. La cual se indica de la siguiente manera:

p ® q Se lee “Si p entonces q”

Ejemplo.
El candidato del PRI dice “Si salgo electo presidente de la República recibirán un 50% de aumento en su sueldo el próximo año”. Una declaración como esta se conoce como condicional. Su tabla de verdad es la siguiente:

Sean
p: Salió electo Presidente de la República.
q: Recibirán un 50% de aumento en su sueldo el próximo año.

De tal manera que el enunciado se puede expresar de las siguiente manera.

p ® q

Conectivos lógicos y proposiciones compuestas

Existen conectores u operadores lógicas que permiten formar proposiciones compuestas (formadas por varias proposiciones).


Los operadores o conectores básicos son:

Operador and (y)
Se utiliza para conectar dos proposiciones que se deben cumplir para que se pueda obtener un resultado verdadero. Si símbolo es: {Ù, un punto (.), un paréntesis}. Se le conoce como la multiplicación lógica:


Ejemplo.
Sea el siguiente enunciado “El coche enciende cuando tiene gasolina en el tanque y tiene corriente la batería”

Sean:
p: El coche enciende.
q: Tiene gasolina el tanque.
r: Tiene corriente la batería.

De tal manera que la representación del enunciado anterior usando simbología lógica es como sigue:

p = q Ù r

Operador Or (o)
Con este operador se obtiene un resultado verdadero cuando alguna de las proposiciones es verdadera. Se eindica por medio de los siguientes símbolos: {Ú,+,È}. Se conoce como las suma lógica. Ejemplo.

Sea el siguiente enunciado “Una persona puede entrar al cine si compra su boleto u obtiene un pase”. Donde.

p: Entra al cine.
q: Compra su boleto.
r: Obtiene un pase.
q
r
p = q Ù r


Operador Not (no)

Su función es negar la proposición. Esto significa que sí alguna proposición es verdadera y se le aplica el operador not se obtendrá su complemento o negación (falso). Este operador se indica por medio de los siguientes símbolos: {‘, Ø,-}.



Además de los operadores básicos (and, or y not) existe el operador xor, cuyo funcionamiento es semejante al operador or con la diferencia en que su resultado es verdadero solamente si una de las proposiciones es cierta, cuando ambas con verdad el resultado es falso.

En este momento ya se pueden representar con notación lógica enunciados más complejos. Ejemplo

Sean las proposiciones:

p: Hoy es domingo.
q: Tengo que estudiar teorías del aprendizaje.
r: Aprobaré el curso.

El enunciado: “Hoy es domingo y tengo que estudiar teorías de aprendizaje o no aprobaré el curso”. Se puede representar simbólicamente de la siguiente manera:

p Ù qÚ r
Por otro lado con ayuda de estos operadores básicos se pueden formar los operadores compuestos Nand (combinación de los operadores Not y And), Nor (combina operadores Not y Or) y Xnor (resultado de Xor y Not).

PROPOSICIONES Y OPERACIONES LOGICAS







Una proposición o enunciado es una oración que puede ser falsa o verdadera pero no ambas a la vez. La proposición es un elemento fundamental de la lógica matemática.
A continuación se tienen algunos ejemplos de proposiciones válidas y no válidas, y se explica el porqué algunos enunciados no son proposiciones. Las proposiciones se indican por medio de una letra minúscula, dos puntos y la proposición propiamente dicha.





Ejemplo.
p: : La tierra es plana.


q: -17 + 38 = 21
r: x > y-9


s: El Morelia será campeón en la presente temporada de Futbol.
t: Hola ¿como estas?
w: Lava el coche por favor.



Los incisos p y q sabemos que pueden tomar un valor de falso o verdadero; por lo tanto son proposiciones validas. El inciso r también es una proposición valida, aunque el valor de falso o verdadero depende del valor asignado a las variables x y y en determinado momento. La proposición del inciso s también esta perfectamente expresada aunque para decir si es falsa o verdadera se tendría que esperar a que terminara la temporada de fútbol. Sin embargo los enunciados t y w no son válidos, ya que no pueden tomar un valor de falso o verdadero, uno de ellos es un saludo y el otro es una orden.

DEFINICION

La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un argumento es válido. La lógica es ampliamente aplicada en la filosofía, matemáticas, computación, física.
. En general la lógica se aplica en la tarea diaria, ya que cualquier trabajo que se realiza tiene un procedimiento lógico, por el ejemplo; para ir de comprasal supermercado una ama de casa tiene que realizar cierto procedimiento lógico que permita realizar dicha tarea.

INTRODUCCION


Aprender matemáticas, física y química "es muy difícil"; así se expresan la mayoría de estudiantes de todos los niveles, sin embargo pocas veces se busca una explicación del porqué no aprenden las ciencias exactas los alumnos. Nuestra teoría es la siguiente: "Los alumnos no aprenden ciencias exactas, porque no saben relacionar las conocimientos que se proporcionan en la escuela (leyes, teoremas, formulas) con los problemas que se le presentan en la vida real". Otro problema grave es que el aprendizaje no es significativo. Por este medio pretendemos motivar a los estudiantes para que con ayuda de la "lógica matemática", él sea capaz de encontrar estos relacionamientos entre los diferentes esquemas de aprendizaje, para que de esta manera tenga una buena estructura cognitiva. Consideramos que si el alumno sabe lógica matemática puede relacionar estos conocimientos, con los de otras áreas para de esta manera crear conocimiento.

BIENVENIDOS

Te invitamos al mundo de la lógica matemática através de nuestro portal http://logicamatematica52.blogspot.com/ para que aprendas con nosotros los conceptos que se manejan en este medio.