miércoles, 26 de mayo de 2010

CONCLUSIONES

El concepto de proposición, la forma en que se pueden formar proposiciones compuestas usando los conectores lógicos, representar enunciados por medio de simbología lógica, conocer los conceptos de tautología, equivalencia lógica, regla de inferencia. Realizar demostraciones de teoremas por medio del método directo y contradicción. Pero con problemas que le sean familiares e interesantes. Se trata de que en cada uno de los subtemas participe proponiendo sus propios ejemplo y que sobre todo al final de la unidad él tenga la habilidad, confianza e iniciativa para inferir posibles soluciones.
Todo enunciado puede ser planteado en términos de teoremas. Un teorema por lo general es resultado de un planteamiento de un problema, este planteamiento debe tener el siguiente formato.



(p1 Ù p2 Ù .......Ù pn) Þ q


Como se establece p1, p2 ,......,pn son hipótesis (o premisas) derivadas del mismo problema y que se consideran válidas. Pero además deberán conectarse con el operador And (Ù ), lo cual implica que p1 es cierta y (Ù ) p2 es verdad y (Ù )...... y pn también es cierta entonces (Þ ) la conclusión (q) es cierta. Para realizar la demostración formal del teorema se deberá partir de las hipótesis, y después obtener una serie de pasos que también deben ser válidos, ya que son producto de reglas de inferencia. Sin embargo no solamente las hipótesis y reglas de inferencia pueden aparecer en una demostración formal, sino también tautologías conocidas. En el teorema anterior cada uno de los pasos p1, p2,...pn son escalones que deberán alcanzarse hasta llegar a la solución.
Lo mismo ocurre con todo tipo de problemas que se nos presentan en la vida, antes de llegar a la solución debemos alcanzar ciertas metas (p1,p2,....pn) hasta llegar al objetivo o conclusión (q). Pero una vez que logramos el objetivo debemos plantearnos nuevos objetivos que nos permitirán superarnos.


Dependiendo del área de interés al estudiante puede transportad dichos conocimientos, de tal manera que le auxilien para entender y resolver otro tipo de problemas. En el caso de computación cada línea de un programa se obtiene inconcientemente aplicando una regla de inferencia y por lo tanto cada instrucción tiene su orden en que debe de ir colocada, si se cambia esa línea seguramente el resultado ya no será igual. Pero hay tantas formas de resolver un problema por medio de un programa como alumnos distintos tenga un maestro.
Una demostración formal equivale a relacionar esquemas para formar estructuras cognitivas. Sí el alumno sabe inferir soluciones lógicas, estará en condiciones de resolver todo tipo de problemas.
Uno de los objetivos principales del constructivismo, es la construcción del conocimiento. El tema de "lógica matemática", se presta para que el alumno pueda realizar los relacionamientos entre las distintas proposiciones, esto permite crear nuevas formas de resolver problemas en distintas ramas: matemáticas, física, química pero también en las ciencias sociales y por su puesto cualquier problema de la vida real. Porque cada vez que nos enfrentamos a un problema, manipulamos la información por medio de reglas de inferencia que aunque no estén escritas debemos respetar. Cada vez que realizamos una actividad empleamos la lógica para realizarla, quizá algunos realicen dicha actividad por caminos más corto, otros realizan recorridos más largos, pero al fin de cuentas lo que importa es llegar al resultado. Si se le da la confianza al alumno para que cree e innove, su estructura cognitiva seguramente va a crecer.

REGLAS DE INFERENCIA

Los argumentos basados en tautologías representan métodos de razonamiento universalmente correctos. Su validez depende solamente de la forma de las proposiciones que intervienen y no de los valores de verdad de las variables que contienen. A esos argumentos se les llama reglas de inferencia. Las reglas de inferencia permiten relacionar dos o más tautologías o hipótesis en una demostración.

Ejemplo 1
¿Es valido el siguiente argumento?.
Si usted invierte en el mercado de valores, entonces se hará rico.
Si se hace usted rico, entonces será feliz.
____________________________________________________
\ Si usted invierte en el mercado de valores, entonces será feliz.
Sea:
p: Usted invierte en el mercado de valores.
q: Se hará rico.
r: Será feliz

De tal manera que el enunciado anterior se puede representar con notación lógica de la siguiente manera:
p ® q
q ® r
______
\ p ® r

EQUIVALENCIA LOGICA.

Se dice que dos proposiciones son lógicamente equivalentes, o simplemente equivalentes. Si coinciden sus resultados para los mismo valores de verdad. Se indican como p º q.
Considero que un buen ejemplo es el que se estableció para ilustrar la tautología en donde se puede observar que las columnas de (p® q) y (q’® p’) para los mismo valores de verdad, por lo tanto se puede establecer que (p® q) º (q’® p’)

TAUTOLOGICAS Y CONTRADICCION

Tautología, es aquella proposición (compuesta) que es cierta para todos los valores de verdad de sus variables.

En las tautologías para todos los valores de verdad el resultado de la proposición es siempre v. Las tautologías son muy importantes en lógica matemática ya que se consideran leyes en las cuales nos podemos apoyar para realizar demostraciones.

A continuación me permito citar una lista de las tautologías más conocidas y reglas de inferencia de mayor uso en las demostraciones formales que obviamente el autor no consideró..



1.- Doble negación.
a). p''Ûp

2.- Leyes conmutativas.
a). (pÚq)Û(qÚp)
b). (pÙq)Û(qÙp)
c). (p«q)Û(q«p)

3.- Leyes asociativas.
a). [(pÚq)Úr]Û[pÚ(qÚr)]
b. [(pÙq)Ùr]Û[pÙ(qÙr)]

4.- Leyes distributivas.
a). [pÚ(qÙr)]Û[(pÚq)Ù(pÚr)]
b. [pÙ(qÚr)]Û[(pÙq)Ú(pÙr)]

5.- Leyes de idempotencia.
a). (pÚp)Ûp
b). (pÙp)Ûp

6.- Leyes de Morgan
a). (pÚq)'Û(p'Ùq')
b). (pÙq)'Û(p'Úq')
c). (pÚq)Û(p'Ùq')'
b). (pÙq)Û(p'Úq')'

7.- Contrapositiva.
a). (p®q)Û(q'®p')

8.- Implicación.
a). (p®q)Û(p'Úq)
b). (p®q)Û(pÙq')'
c). (pÚq)Û(p'®q)
d). (pÙq)Û(p®q')'
e). [(p®r)Ù(q®r)]Û[(pÙq)®r]
f). [(p®q)Ù(p®r)]Û[p®(qÙr)]


9.- Equivalencia
a). (p«q)Û[(p®q)Ù(q®p)]

10.- Adición.
a). pÞ(pÚq)

11.- Simplificación.
a). (pÙq)Þp

12.- Absurdo
a). (p®0)Þp'


13.- Modus ponens.
a). [pÙ(p®q)]Þq

14.- Modus tollens.
a). [(p®q)Ùq']Þp'

15.- Transitividad del «
a). [(p«q)Ù(q«r)]Þ(p«r)

16.- Transitividad del ®
a). [(p®q)Ù(q®r)]Þ(p®r)

17.- Mas implicaciones lógicas.
a). (p®q)Þ[(pÚr)®(qÚs)]
b). (p®q)Þ[(pÙr)®(qÙs)]
c). (p®q)Þ[(q®r)®(p®r)]

18.- Dilemas constructivos.
a). [(p®q)Ù(r®s)]Þ[(pÚr)®(qÚs)]
b). [(p®q)Ù(r®s)]Þ[(pÙr)®(qÙs)]



Contradicción es aquella proposición que siempre es falsa para todos los valores de verdad, una de las mas usadas y mas sencilla es pÙp’ .

Una proposición compuesta cuyos resultados en sus deferentes líneas de la tabla de verdad, dan como resultado 1s y 0s se le llama contingente.

TABLAS DE VERDAD

En estos momentos ya se está en condiciones de elaborar cualquier tabla de verdad.



El número de líneas de la tabla de verdad depende del número de variables de la expresión y se puede calcular por medio de la siguiente formula.

No de líneas = 2n Donde n = número de variables distintas.

Es importante destacar a medida que se avanza en el contenido del material el alumno deberá participar activamente. Estos significa que cuando se esta definiendo proposiciones y características propias de ellas, además de los ejemplos que el maestro explique, el alumno deberá citar proposiciones diferentes, deberá entender el porque un enunciado no es válido. Cuando se ven conectores lógicos, los alumnos deberán saber emplearlos en la representación de proposiciones más complejas. Pero algo muy importante, es que los ejemplo que el maestro y los alumnos encuentren en la clase, deben ser de interés para el estudiante. Cuando se ven tablas de verdad el alumno deberá saber perfectamente bien el porque de cada uno de los resultados. En pocas palabras el conocimiento deberá ser significativo.

PROPOSICIONES BICONDICIONALES

Sean p y q dos proposiciones entonces se puede indicar la proposición bicondicinal de la siguiente manera:

p « q Se lee “p si solo si q”

Esto significa que p es verdadera si y solo si q es también verdadera. O bien p es falsa si y solo si q también lo es.



La proposición condicional solamente es verdadera si tanto p como q son falsas o bien ambas verdaderas


A partir de este momento, ya se está en condiciones de representar cualquier enunciado con conectores lógicos.

Ejemplo.
Sea el siguiente enunciado “Si no pago la luz, entonces me cortarán la corriente eléctrica. Y Si pago la luz, entonces me quedaré sin dinero o pediré prestado. Y Si me quedo sin dinero y pido prestado, entonces no podré pagar la deuda, si solo si soy desorganizado”

Donde:
p: Pago la luz.
q: Me cortarán la corriente eléctrica.
r: Me quedaré sin dinero.
s: Pediré prestado.
t: Pagar la deuda.
w: soy desorganizado.

(p’ ® q) Ù [p ® (rÚs) ] Ù [(rÙ s) ® t’ ] « w

PROPOSICIONES CONDICIONALES

Una proposición condicional, es aquella que está formada por dos proposiciones simples (o compuesta) p y q. La cual se indica de la siguiente manera:

p ® q Se lee “Si p entonces q”

Ejemplo.
El candidato del PRI dice “Si salgo electo presidente de la República recibirán un 50% de aumento en su sueldo el próximo año”. Una declaración como esta se conoce como condicional. Su tabla de verdad es la siguiente:

Sean
p: Salió electo Presidente de la República.
q: Recibirán un 50% de aumento en su sueldo el próximo año.

De tal manera que el enunciado se puede expresar de las siguiente manera.

p ® q